5,448 research outputs found

    Typical local measurements in generalised probabilistic theories: emergence of quantum bipartite correlations

    Get PDF
    What singles out quantum mechanics as the fundamental theory of Nature? Here we study local measurements in generalised probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalisation of Dvoretzky's theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however.Comment: 5 pages, 1 figure v2: more details in the proof of the main resul

    Entanglement in quantum critical phenomena

    Get PDF
    Quantum phase transitions occur at zero temperature and involve the appearance of long-range correlations. These correlations are not due to thermal fluctuations but to the intricate structure of a strongly entangled ground state of the system. We present a microscopic computation of the scaling properties of the ground-state entanglement in several 1D spin chain models both near and at the quantum critical regimes. We quantify entanglement by using the entropy of the ground state when the system is traced down to LL spins. This entropy is seen to scale logarithmically with LL, with a coefficient that corresponds to the central charge associated to the conformal theory that describes the universal properties of the quantum phase transition. Thus we show that entanglement, a key concept of quantum information science, obeys universal scaling laws as dictated by the representations of the conformal group and its classification motivated by string theory. This connection unveils a monotonicity law for ground-state entanglement along the renormalization group flow. We also identify a majorization rule possibly associated to conformal invariance and apply the present results to interpret the breakdown of density matrix renormalization group techniques near a critical point.Comment: 5 pages, 2 figure

    Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    Full text link
    For continuous-variable systems, we introduce a measure of entanglement, the continuous variable tangle ({\em contangle}), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three--mode Gaussian states, and in all fully symmetric NN--mode Gaussian states, for arbitrary NN. For three--mode pure states we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three--mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous continuous-variable analogs of both the GHZ and the WW states of three qubits: in continuous-variable systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.Comment: 13 pages, 1 figure. Replaced with published versio

    Entanglement and correlation functions following a local quench: a conformal field theory approach

    Full text link
    We show that the dynamics resulting from preparing a one-dimensional quantum system in the ground state of two decoupled parts, then joined together and left to evolve unitarily with a translational invariant Hamiltonian (a local quench), can be described by means of quantum field theory. In the case when the corresponding theory is conformal, we study the evolution of the entanglement entropy for different bi-partitions of the line. We also consider the behavior of one- and two-point correlation functions. All our findings may be explained in terms of a picture, that we believe to be valid more generally, whereby quasiparticles emitted from the joining point at the initial time propagate semiclassically through the system.Comment: 19 pages, 4 figures, v2 typos corrected and refs adde

    A short proof of stability of topological order under local perturbations

    Full text link
    Recently, the stability of certain topological phases of matter under weak perturbations was proven. Here, we present a short, alternate proof of the same result. We consider models of topological quantum order for which the unperturbed Hamiltonian H0H_0 can be written as a sum of local pairwise commuting projectors on a DD-dimensional lattice. We consider a perturbed Hamiltonian H=H0+VH=H_0+V involving a generic perturbation VV that can be written as a sum of short-range bounded-norm interactions. We prove that if the strength of VV is below a constant threshold value then HH has well-defined spectral bands originating from the low-lying eigenvalues of H0H_0. These bands are separated from the rest of the spectrum and from each other by a constant gap. The width of the band originating from the smallest eigenvalue of H0H_0 decays faster than any power of the lattice size.Comment: 15 page

    Charged exctions in the fractional quantum Hall regime

    Full text link
    We study the photoluminescence spectrum of a low density (ν<1\nu <1) two-dimensional electron gas at high magnetic fields and low temperatures. We find that the spectrum in the fractional quantum Hall regime can be understood in terms of singlet and triplet charged-excitons. We show that these spectral lines are sensitive probes for the electrons compressibility. We identify the dark triplet charged-exciton and show that it is visible at the spectrum at T<2T<2 K. We find that its binding energy scales like e2/le^{2}/l , where ll is the magnetic length, and it crosses the singlet slightly above 15 T.Comment: 10 pages, 5 figure

    Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems

    Get PDF
    Gapped ground states of quantum spin systems have been referred to in the physics literature as being `in the same phase' if there exists a family of Hamiltonians H(s), with finite range interactions depending continuously on s[0,1]s \in [0,1], such that for each ss, H(s) has a non-vanishing gap above its ground state and with the two initial states being the ground states of H(0) and H(1), respectively. In this work, we give precise conditions under which any two gapped ground states of a given quantum spin system that 'belong to the same phase' are automorphically equivalent and show that this equivalence can be implemented as a flow generated by an ss-dependent interaction which decays faster than any power law (in fact, almost exponentially). The flow is constructed using Hastings' 'quasi-adiabatic evolution' technique, of which we give a proof extended to infinite-dimensional Hilbert spaces. In addition, we derive a general result about the locality properties of the effect of perturbations of the dynamics for quantum systems with a quasi-local structure and prove that the flow, which we call the {\em spectral flow}, connecting the gapped ground states in the same phase, satisfies a Lieb-Robinson bound. As a result, we obtain that, in the thermodynamic limit, the spectral flow converges to a co-cycle of automorphisms of the algebra of quasi-local observables of the infinite spin system. This proves that the ground state phase structure is preserved along the curve of models H(s),0s1H(s), 0\leq s\leq 1.Comment: Updated acknowledgments and new email address of S

    Superfluid to solid crossover in a rotating Bose-Einstein condensed gas

    Full text link
    The properties of a rotating Bose-Einstein condensate confined in a prolate cylindrically symmetric trap are explored both analytically and numerically. As the rotation frequency increases, an ever greater number of vortices are energetically favored. Though the cloud anisotropy and moment of inertia approach those of a classical fluid at high frequencies, the observed vortex density is consistently lower than the solid-body estimate. Furthermore, the vortices are found to arrange themselves in highly regular triangular arrays, with little distortion even near the condensate surface. These results are shown to be a direct consequence of the inhomogeneous confining potential.Comment: 4+e pages, 5 embedded figures, revte
    corecore